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Abstract

This paper presents an experimental and a numerical method to analyze the formation of the steady-state solid±

liquid interface in a cooled axially rotating pipe for turbulent ¯ow and constant wall temperature.
The experimental investigations show that wavy ice layers occur when the ¯uid acceleration due to growth of the

solid phase is strong enough to cause a ¯ow laminarization. The comparison of the experiments with the numerical
calculations reveals that the applied Reynolds stress turbulence closure is able to capture the e�ects caused by the

acceleration as well as the laminarization due to ¯ow rotation. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Freezing in liquid ¯ow inside tubes is an important

engineering problem occurring in the ®eld of water

transport in cold regions and in the ®eld of casting,

among others. For steady-state conditions and con-

stant wall temperature Zerkle and Sunderland [1]

solved the problem of the laminar ¯ow analytically.

They assumed a parabolic axial velocity distribution

throughout the full length of the cooled section.

The solidi®cation in turbulent pipe and channel

¯ows was investigated numerically by Weigand and

Beer [2], applying Prandtl's mixing length hypothesis.

The calculations were restricted to smooth ice layers

with a monotonously increasing thickness in ¯ow

direction. Gilpin's [3] experimental investigations of

the turbulent pipe ¯ow revealed that for su�ciently

high freezing parameters and low Reynolds numbers

the acceleration of the ¯uid due to the converging ice

layer causes a ¯ow laminarization and a reduction of

the heat transfer rate in the entrance region of the

cooled section followed by a retransition to full turbu-

lent ¯ow. This leads to a wavy ice structure, frequently

migrating a certain distance upstream. Further exper-

iments concerning the formation of wavy ice layers are

known by Hirata and Matsuzawa [4]. Assuming a con-

stant turbulent shear stress along the streamlines in the

strongly accelerating part of a cooled channel ¯ow,

Weigand and Beer [5] calculated wavy ice layers which

are in good agreement with their own experimental

results.

The ¯ow in an axially rotating pipe arising fre-

quently in the ®eld of rotating machineries is also an

important engineering problem. Kikuyama et al. [6]

investigated the in¯uence of the pipe rotation on the

¯ow ®eld experimentally and theoretically. For turbu-

lent entrance ¯ow they observed a laminarization of

the axial velocity distribution and a reduced hydraulic

loss in comparison with the non-rotating pipe ¯ow.

Reich and Beer [7] examined the same kind of ¯ow

with special regard to the heat transfer rate and

observed that the ¯ow laminarization causes a re-

duction of the Nusselt number, too. Nishibori et al. [8]

considered the radial distribution of the streamwise

velocity ¯uctuations along the developing turbulent
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¯ow in a rotating pipe. Compared with the ¯ow with-

out swirl they observed, especially in the entrance

region, a considerable decrease of the streamwise vel-

ocity ¯uctuations.

Weigand and Beer [9] calculated the turbulent ro-

tational entrance ¯ow numerically by using a mixing

length hypothesis. In order to take into account the in-

¯uence of streamline curvature they introduced the

Richardson number as a parameter of the mixing

length. The tangential velocity distribution along the

rotating section was given by an empirical, but univer-

sal correlation. Hirai et al. [10] showed that a standard

eddy viscosity turbulence model fails to predict cor-

rectly the fully developed ¯ow in an axially rotating

pipe, whereas a Reynolds stress turbulence closure is

able to capture the laminarization e�ect in¯uencing the

axial velocity ®eld as well as the universally observed

parabolic tangential velocity distribution. For the same

kind of ¯ow Eggels [11] applied a large eddy simu-

lation successfully.

The formation of the solid phase in a cooled axially

rotating pipe at low ¯ow-rate Reynolds numbers was

investigated theoretically by Rinck and Beer [12],

applying a zero-equation turbulence model. As far as

we know there exist no experimental data concerning

the freezing in an axially rotating pipe ¯ow whose

technical application can be found in the ®eld of cen-

trifugal casting.

Nomenclature

A stress ¯atness factor, Eq. (27)
A2, A3 second and third invariants of aij
a thermal di�usivity

aij dimensionless anisotropic Reynolds stress,
Eq. (20)

B dimensionless freezing parameter, YCks/kl
Cij convective transport of vivj
D pipe diameter
dij turbulent di�usive transport of vivj
K acceleration parameter, Eq. (1)
k turbulent kinetic energy, vkvk/2
kl, ks thermal conductivity of the liquid and the

solid phase, respectively

N rotation rate, VjW/Vz0

Nl local rotation rate, N(d/R )3

ni unit vector perpendicular to the surface

P time mean pressure
Pr Prandtl number, n/a
Prt turbulent Prandtl number, nt/nq
Pij shear generation rate of vivj
Pk shear generation rate of k, Pkk/2
p pressure ¯uctuations

R pipe radius
Rij additional components in the equations for

vivj arising due to the coordinate trans-
formation

ReD Reynolds number at the entrance, Vz0D/n
Rel local Reynolds number, Vzl2d/n
Ret turbulent Reynolds number, k 2/(En )
r radial coordinate
rÄ scaled dimensionless radial coordinate, r/d
T time mean temperature

TF freezing temperature of the liquid
Vi time mean velocity in direction i

Vz0 mean axial velocity over the pipe cross sec-
tion at the entrance

Vzl mean axial velocity over the local pipe

cross section, Vz0(R/d )
2

vi velocity ¯uctuation in direction i
vit turbulent heat ¯ux in direction i

vivj kinematic Reynolds stress
xi cartesian coordinate in direction i
z axial coordinate

zw position of the ¯ow separation point.

Greek symbols
d free pipe radius
dij Kronecker's symbol

E dissipation rate of turbulence energy
~E modi®ed dissipation rate of turbulence

energy, Eq. (35)

Eij kinematic dissipation rate of vivj
YC dimensionless cooling temperature ratio,

(TFÿTW)/(T0ÿTF)
n kinematic viscosity

nq turbulent thermal di�usivity
nt eddy viscosity
nij viscous di�usion of vivj
r density
Fij pressure±strain correlation
j tangential coordinate

o angular frequency.

Subscripts
s solid phase
W at the pipe wall

0 at the entrance.
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2. Experiment

2.1. Experimental apparatus

A schematic outline of the horizontally mounted ap-

paratus is shown in Fig. 1. It mainly consists of a test
section, a refrigeration unit and two circulation sys-
tems for water and coolant, respectively.

Water is pumped from a tank through an insulated
calming section, 2.6 m in length, in order to ensure a
fully developed non-rotating turbulent ¯ow at the

entrance of the test section. The temperature of the
water is measured with three thermocouples at the
inlet and controlled by an NTC (temperature depen-
dant resistor) controlled heater.

The test section is constructed of two concentric
tubes with an arrangement of bearings and rotary
shaft seals. The water ¯ows through the cooled inner

brass tube which has a 50 mm i.d. and rotates around
its axis. Pipe rotation is accomplished by a variable
speed d.c. motor and a V-belt drive. The temperature

of the rotating pipe wall is measured by 11 thermo-
couples. With the aid of a slip ring the thermoelectric
voltages are transmitted to the stationary instrumen-

tation.
Cooling is provided by an ethylene glycol±water

mixture circulating with high velocity through the

narrow annulus between the tubes which is divided
into 10 chambers. In order to enhance heat transfer,

spiral ripples were welded on the outer surface of the
rotating pipe. The coolant ¯ow loop consists of the re-
frigeration unit with an integrated pump, a coolant

distributor and collector as well as thermometric
measuring instruments. This loop can be switched over
to a second loop with `warm coolant' for melting the

ice layer frozen at the inner surface of the tube. This is
necessary in order to remove the solid phase from the
apparatus for observation and thickness-measurement

at the end of the experiment.

2.2. Operating procedure

During the experiment the water ¯ow rate, the ro-
tational speed of the pipe, the inlet temperature, the
temperature of the coolant and the wall temperature of

the rotating pipe are controlled. The stationary case is
considered to be found when all wall temperatures
which are slightly in¯uenced by the formation and the

migration of the ice-waves do not change for at least
two hours. Then, the water pump and the d.c. motor
are switched o� in order to generate a second ice layer

coating the inner surface of the solid phase that devel-
oped during the experiment.
After 10 min, when the liquid core in the test section

Fig. 1. Schematic drawing of experimental apparatus.
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has a diameter of about 2 cm yet, the tube is drained
o� and the plastic tubing at the end of the pipe is

detached from the bearing block (see Fig. 1). After
that, a thin plastic tube, 2 m in length and with 1 cm
o.d., is slipped through the opening into the test sec-

tion. The water loop is closed again and the pipe is
®lled with water by switching on the pump for a few
seconds. The described coating of the investigated ice

layer avoids a damage of same during this procedure.
In the next 30 min the pipe freezes up completely

while the thin plastic tube in the test section ensures

that no tension is imposed on the ice structure.
Finally, the outer surface of the ice cylinder is melted
slightly by switching over to the loop with the `warm
coolant' and the entire ice structure is removed from

the apparatus by detaching the big plastic tubing once
again and pulling out the thin tube.
Because of the curved cylinder surface the optical

distortion is considerable and the developed ice layer
can not be observed directly. Thus, it is put into a rec-
tangular acrylic basin ®lled with cold water that has

almost the same refractive index like ice. Now it is
possible to record the ice layer photographically with
only a slight distortion which can be taken into

account by calculation. Due to the di�erent mor-
phology of the ice developed slowly during the exper-
iment and the ice generated rapidly afterwards, the
shape of the frozen crust is easy to make out.

3. Experimental results

The range of conditions employed in the present in-
vestigations are:

. Reynolds number ReD: 5000 R ReD R 40,000

. Rotation rate N: 0 R N R 1

. Inlet temperature T0: 274.5 K R T0 R 277.2 K

. Wall temperature TW: 262 K R TW R 268 K

Therefore, the cooling temperature ratio YC=
(TFÿTW)/(T0ÿTF) varies in the range 1.2 R YC R 7.3.
In the following the e�ects in¯uencing the ¯ow, the

heat transfer and, ®nally, the shape of the solid phase
are described.

3.1. Laminarization due to ¯ow acceleration and pipe
rotation

Because the cross section of ¯ow depends on the
free pipe radius d squared (see Fig. 9), even a thin ice
layer causes a considerable ¯ow acceleration in the

entrance region of the test section. Its intensity can be
described by the acceleration parameter

K � n
V 2

zl

dVzl

dz
� ÿ 4

ReD

d
R

dd
dz

�1�

which takes extremely high values up to 50 � 10ÿ6 in
the present study. Moretti and Kays [13] found that a

¯ow laminarization already occurs for
K = 263 � 10ÿ6. Therefore, a strong suppression of
the turbulent ¯uctuations takes place which reduces

the convective heat transfer in this region. As a result
the local ice layer thickness increases amplifying the
¯ow acceleration again. This occurrence is damped by

the increase of the local Reynolds number Rel=ReD
R/d enhancing the turbulence.
Downstream the ice layer thickness does not change

much any more in ¯ow direction and the ¯ow acceler-
ation dies o� rapidly. This introduces the retransition
of the laminarized ¯ow to an again full turbulent ¯ow
causing a wavy shape of the solid phase. In some cases

this procedure repeats itself and ice layers with several
waves can be observed.
The pipe rotation leads to a laminarization of the

turbulent ¯ow and reduces the convective heat transfer
in the ¯uid, too. But, in contrast to the ¯ow acceler-
ation, the local rotation rate

Nl � Vj jr�d
Vzl

�
VjW

d
R

Vz0

�
R

d

�2
� N

�
d
R

�3

�2�

and, therefore, the in¯uence of the rotation decreases
rapidly when the solid phase becomes thicker.

3.2. Classi®cation of ice structure

Figs. 2 and 3 show the two di�erent kinds of waves

observed in the experiments [4,14]. A `smooth tran-
sition' denotes a wave without ¯ow separation occur-
ring when the ice layer is thin and the suppression of
the turbulence due to the converging duct is moderate.

In contrast to this, a `step transition' develops if the
solid phase is thick enough to cause an intensive ¯ow
laminarization. In this case the ¯ow separates at the

point where the ice layer has its maximum thickness,
inducing the mentioned upstream migration of the
wave.

In our experiments with a non-rotating pipe (see
Fig. 4) a `smooth transition' can be observed when the
cooling temperature is lower than

YC jN�0� 0:0038Re2=3D : �3�

Because the rotation leads to an increase of the ice

layer thickness this limit is reduced to

YC jN�0:5� 2:4� 10ÿ4Re11=12D �4�

for a pipe rotating with N = 0.5 (see Fig. 5).
The stationary separation point of the `step tran-

sition' ice formation zw can be correlated with a maxi-
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mum error of less than 20% by

zw

D

����
N�0
� 797Reÿ0:29D Bÿ1 �5�

in the non-rotating pipe and by

zw

D

����
N�0:5
� 29:78Bÿ0:94 �6�

for N = 0.5. Eqs. (5) and (6) show that an increase of
the cooling parameter as well as the pipe rotation lead
to a separation point located closer to the entrance

and reduce the spacing between the separation points
causing ice layers with several waves, too (see Figs. 6±
8).

4. Analysis

4.1. Basic equations

Fig. 9 illustrates the geometry of the considered

problem. The ¯uid enters the cooled section at z = 0
with a fully developed turbulent non-rotating ¯ow and
with the constant temperature T0. In the chill region

(z>0) the temperature of the pipe wall is kept at a

constant value TW which is lower than the freezing
temperature of the ¯uid TF and, therefore, a solid
phase is generated at the cooled wall.
On the assumption that free convection e�ects are

negligible the time mean conservation equations of
mass, momentum and energy in cartesian coordinates
for a steady-state ¯ow of a Newtonian ¯uid with con-

stant properties can be reduced to

@Vj

@x j
� 0, �7�

Vj
@Vi

@x j
� ÿ1

r
@P

@x i
� n

@ 2Vi

@x j@x j
ÿ @vivj
@x j

, �8�

Vi
@T

@x i
� a

@ 2T

@x i@x i
ÿ @vit
@xi

: �9�

The transport equations of the Reynolds stresses can
be written as

Cij � Pij � nij � Fij � dij ÿ Eij � Rij: �10�

In these equations

Fig. 3. `Step transition'.

Fig. 2. `Smooth transition'.
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Cij � Vk
@vivj
@xk

�11�

are the convection terms,

Pij � ÿ
�
vivk

Vj

xk
� vjvk

Vi

xk

�
�12�

is the stress generation rate by mean shear,

nij � @

@xk

�
n
@vivj
@xk

�
�13�

the viscous di�usion,

Fig. 5. Logarithmic ReDÿYC diagram for N = 0.5.

Fig. 4. Logarithmic ReDÿYC diagram for N = 0.

K.-J. Rinck, H. Beer / Int. J. Heat Mass Transfer 42 (1999) 4375±43894380



Fij � p

r

�
@vi
@x j
� @vj
@x i

�
�14�

the pressure±strain correlation,

dij � ÿ @

@xk

�
vivjvk � 1

r
pvidjk � 1

r
pvjdik

�
�15�

the turbulent di�usion and

Eij � 2n
@vi
@xk

@vj
@xk

�16�

the dissipation rate.
A further simpli®cation is achieved by the fact that

the rotating pipe ¯ow is axisymmetric and by the com-
mon boundary layer assumptions [15] leading to a
parabolic type of the governing equations.

The transformation from the Cartesian into the
cylindrical coordinate system causes additional terms
in the momentum equations, known as the centrifugal

and the Coriolis force. Moreover, comprehensive ad-
ditional terms

Rij � Pij, add � nij, add ÿ Cij, add � Fij, 2, add � dij, add �17�

arise in the transport equations for the Reynolds

stresses, too [10,16,17].

4.2. Turbulence model

In the transport equations of the Reynolds stresses
the pressure-strain correlation Fij, the turbulent dif-

fusion dij and the dissipation rate Eij have to be mod-
elled. For the calculation of these terms a slightly
modi®ed low-Reynolds-number second-moment clo-

sure proposed by Launder and Shima [18] is applied,

which has proved to be reliable for strongly accelerated
as well as for highly swirling ¯ows [16,19].

The model for the pressure±strain correlation con-
sists of four parts:

Fij � Fij, 1 � Fij, 2 � Fw
ij, 1 � Fw

ij, 2 �18�

Fij,1 is the so-called `return-to-isotropy' part and Fij,2

represents the `rapid' term. With Fw
ij,1 and Fw

ij,2 the
`echo' e�ects of the re¯ected pressure ¯uctuations in
the vicinity of a rigid wall are taken into account. Fij,1

is modelled by the `return-to-isotropy' model of Rotta

[20]

Fij, 1 � ÿc1Eaij, �19�

aij denoting the dimensionless anisotropic parts of the
Reynolds stresses:

aij � vivj
k
ÿ 2

3
dij: �20�

For the `rapid' part Fij,2 Launder and Shima propose

the standard isotropization of production (IP) model.
But, especially in complex swirling ¯ows, a better co-
incidence with experimental results can be achieved

with the isotropization of production and convection
(IPC) model [11,21], because the additional convective
terms arising due to the coordinate transformation

have a considerable in¯uence on the turbulence in the
rotating pipe ¯ow:

Fij, 2 � ÿc2
�
Pij ÿ 1

3
dijPkk ÿ Cij � 1

3
dijCkk

�
: �21�

The `echo' e�ects are modelled by

Fig. 7. Ice layer with three waves at ReD=10,000, B= 18, N= 0.5

Fig. 6. Ice layer with two waves at ReD=10,000, B= 10, N= 0.5.
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Fw
ij, 1 � cw

1

E
k

ÿ
vkvlnknldij ÿ 3

2vkvinknj ÿ 3
2vkvjnkni

�
fw, �22�

Fw
ij, 2 � cw

2

�
Fkl, 2nknldij ÿ 3

2
Fik, 2nknj

ÿ3
2
Fjk, 2nkni

�
fw �23�

with the near-wall damping function

fw � 0:4
k3=2

Ex 2
, �24�

x2 being the distance normal to the wall.
The extension of the turbulence model to the viscous

sublayer is achieved by expressing the coe�cients in

the pressure±strain correlation model as functions of
the turbulent Reynolds number

Ret � k2

nE
�25�

and the two independent Reynolds stress invariants

A2 � aklalk, A3 � aklalmamk: �26�
The parameter

A � 1ÿ 9

8
�A2 ÿ A3� �27�

ranges from zero in the two-component limit to unity

in isotropic turbulence and can be interpreted as the
`¯atness' of turbulence.

The comparatively small wall e�ects concerning the
turbulent di�usion dij are neglected and, in order to
minimize the number of empirical values, Fij is

assumed to include the wall e�ects on the dissipation
rate, too.
For the coe�cients the following set of equations is

employed:

c1 � 1� 2:58AA1=4
2 �1ÿ exp�ÿ�0:0067Ret�2��, �28�

c2 � 0:83
����
A
p

�29�

cw
1 � ÿ

2

3
c1 � 1:67, �30�

cw
2 � max

��
2

3
ÿ 1

6c2

�
, 0

�
: �31�

Daly and Harlow's [22] generalized gradient di�usion
hypothesis is chosen for modelling the turbulent dif-
fusion term:

dij � @

@xk

�
cs
k

E
vkvl

@vivj
@x l

�
: �32�

The calculation of the fully developed pipe ¯ow at the
entrance of the cooled section reveals too high values

for the normal Reynolds stresses at the symmetry line
when the standard value cs=0.22 is employed. This
can be explained by the singularity in Daly and

Harlow's model for r = 0, causing an overprediction
of turbulent di�usion in the area close to the symmetry

Fig. 9. Physical model.

Fig. 8. Ice layer with several waves at ReD=15000, B= 30, N= 0.5.

K.-J. Rinck, H. Beer / Int. J. Heat Mass Transfer 42 (1999) 4375±43894382



axis. Thus, cs=0.11 is chosen providing excellent
agreement with experimental results [19].

For the dissipation rate Eij local isotropy is assumed:

Eij � 2

3
dijE: �33�

The energy dissipation rate E is calculated with the aid
of the following transport equation [18]:

Vk
@ E
@xk
� @

@xk

"�
cE
k

E
vkvl � ndkl

�
@E
@x l

#
� ~c �cE1

�c1 � c2�
E
k
Pk ÿ cE2

E~E
k

�34�

with

~E � Eÿ 2n

 
@

���
k
p

@xj

!2

, �35�

c1 � 2:5A

�
Pk

E
ÿ 1

�
, �36�

c2 � 0:3�1ÿ 0:3A2� exp�ÿ�0:002Ret�2�: �37�

The quantity ~E equals zero at the wall and, thus,
avoids that the last term in Eq. (34) tends to minus in-

®nity as the wall is approached. For the coe�cients cE,
cE1 and cE2 the standard values of 0.18, 1.45 and 1.9
are taken, respectively. The quantity cÄ is introduced in
order to avoid a too strong ¯ow laminarization in the

entrance region of the cooled pipe caused by an ex-
tremely high local acceleration parameter
K= 20650 � 10ÿ6. For cÄ the following expression is

chosen [14]:

~c �
�

exp�ÿ�cDK �2� �K > 0�
1 �KR0� �38�

with

cD �
�
4:5ReD �1: acceleration section�
3� 105 �2: acceleration section� : �39�

For the calculation of the turbulent heat ¯uxes a
simple modelling with the aid of the turbulent Prandtl

number is employed. Simulations using transport
equations for the turbulent heat ¯uxes reveal stability
problems and do not lead to an improvement concern-

ing the coincidence with the experimental results.
The turbulent heat ¯ux is assumed to be pro-

portional to the turbulent thermal di�usivity

vrt � ÿnq
@T

@r
�40�

with

nq � nt

Prt

and nt � cnfn
k2

E
: �41�

For the turbulent Prandtl number the value Prt=0.9 is

chosen and 0.09 is adapted as the value of the constant
cn. The wall in¯uence is captured by the model func-
tion [23]

fn � exp

0B@ ÿ3:4�
1� Ret

50

�2

1CA: �42�

4.3. Boundary conditions

Boundary conditions have to be provided at the
entrance of the cooled section, at the symmetry axis
and at the solid±liquid interface:

z � 0: Vr � 0; Vz � given; Vj � 0; P � given;

T � T0; vivj � given; E � given;

r � 0: Vr � 0;
@Vz

@ r
� 0; Vj � 0;

@T

@r
� 0;

@vivj
@r
� 0�i � j �; vivj � 0�i 6� j �; @ E

@ r
� 0;

r � d: Vr � 0; Vz � 0; Vj � d
R
VjW;

T � TF; vivj � 0; ~E � 0:

�43�

4.4. Calculation of ice layer geometry

In order to determine the axial distribution of the
local free pipe radius d(z ), the temperature distribution
in the solid phase has to be considered. Neglecting

axial heat conduction e�ects and assuming constant
properties leads to the following energy equation for
the frozen crust:

@

@r

�
r
@Ts

@r

�
� 0: �44�

The boundary conditions at the solid±liquid interface

and at the cooled wall are given by

Ts�r � d� � TF,

Ts�r � R� � TW: �45�
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In order to couple the temperature distributions in the
solid and the liquid phase, the energy equation of the

solid±liquid interface is required:

r � d: ks

@Ts

@r
� kl

@T

@ r
: �46�

By integrating Eq. (44) and using the boundary con-

ditions (Eq. (45)) the temperature distribution and the
temperature gradient in the frozen crust can be calcu-
lated:

dRrRR: Ts � TF ÿ �TF ÿ TW� ln�r=d�
ln�R=d� , �47�

dRrRR:
@Ts

@ r
� ÿ1

r

TF ÿ TW

ln�R=d� : �48�

Inserting the equation for the temperature gradient

(48) into the interface energy Eq. (46) yields the
required function for d:

ln

�
d
R

�
� 1

d
ks

kl

TF ÿ TW

@T

@r

����
r�d

: �49�

4.5. Numerical method

The di�erential equations are converted into a
dimensionless form and solved numerically with the

aid of the ®nite volume method using a nonuniform
grid. Here, a staggered-grid formation ensures a higher
stability of the equation system [17,18]. In order to

provide the boundary conditions at the solid±liquid
interface at a constant value of the radial coordinate,

it is scaled with the local free pipe radius:

~r � r

d
: �50�

For the prediction of the solid phase a straight pipe
with no solidi®cation is assumed ®rst (d/R=1). By

solving the equation system the temperature gradient
along the solid±liquid interface can be calculated pro-
viding a new distribution for d (see Eq. (49)). This iter-

ation procedure is repeated until convergence is
achievedÐthe intensive interaction between the shape
of the ice layer and the heat transfer in the ¯ow

demands an underrelaxation.
Concerning the calculation of a `step transition' ice

formation with ¯ow separation, the FLARE-approxi-
mation [24] ensures the numerical stability in the recir-

culation region [5].

5. Comparison of experimental and numerical results

5.1. Non-rotating pipe ¯ow

Fig. 10 shows the steady-state shape of the solid

phase for ReD=20,000, N= 0 and di�erent freezing
parameters. At B = 10 the ice layer causes only a
moderate ¯ow acceleration leading to a `smooth tran-

sition' whereas for B = 13 a thicker ice layer with
`step transition' occurs.
Fig. 11 elucidates the development of the axial vel-

Fig. 10. Ice layers for ReD=20,000, N= 0, B = 10 (`smooth transition') and B = 13 (`step transition').

K.-J. Rinck, H. Beer / Int. J. Heat Mass Transfer 42 (1999) 4375±43894384



ocity distribution for B = 13. Due to the convergent

ice layer the ¯ow is strongly accelerated in the entrance

region (0 R z/D R 2) and approaches a slug pro®le. In

the di�user section downstream the ¯ow is decelerated

and separates from the solid±liquid interface, generat-

ing a small recirculation bubble. At the end of the

cooled section the ice layer thickness and, therefore,

the velocity distributions are nearly constant along the

pipe.

Fig. 12 depicts the strong suppression of the stream-

wise velocity ¯uctuations vzvz, along the entrance

region caused by the ¯at distribution of Vz leading to

a small production term Pzz (see Eq. (12)). Moreover,

the thickness of the viscous sublayer increases clearly

due to a negative production term Prr in the vicinity of

the solid±liquid interface [14]. In the di�user section

the velocity gradient @Vz/@r outside the viscous sub-

layer increases considerably and generates big pro-

duction terms Pzz and Prz. Therefore, the distribution

of vzvz rises rapidly, too. At the end of the cooled sec-

tion the ¯ow approaches the state of equilibrium tur-

bulence again.

Fig. 12. Development of the streamwise velocity ¯uctuations for ReD=20,000, B= 13 and N= 0.

Fig. 11. Development of the axial velocity distribution for ReD=20,000, B = 13 and N= 0.
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Fig. 13 shows the `step transition' ice formation for
ReD=10,000 and di�erent freezing parameters. At

B = 13 the wave is located closer to the entrance

because the local Reynolds number Rel increases more
rapidly due to the thicker ice layer. This leads to an

earlier retransition back to full turbulent ¯ow (see Eq.

(5)) and the maximum thickness of the solid phase
increases only slightly.

In Fig. 14 one can see the in¯uence of the Reynolds

number on the shape of the frozen crust at B = 18. At

ReD=40,000 the heat transfer rate in the ¯ow is very
high and only a quite thin ice layer develops. Thus, the

¯ow laminarization is only moderate and the retran-
sition is introduced faster than in the strongly acceler-

ated ¯ow at ReD=20,000.

All in all, the simulations in Figs. 10, 13 and 14 are

in good agreement with the experimental results. Only
in the region where the ice layer reaches its minimum

thickness the deviations are somewhat larger. This can

be explained by the neglect of axial di�usion e�ects
that have a considerable in¯uence on heat transfer in

this region. Moreover, for larger di�user angles the

¯ow is not axisymmetric any more as it is assumed in
the theory [5].

Fig. 14. `Step transition' Ice layers for B = 18, N= 0, ReD=20,000 and ReD=40,000.

Fig. 13. `Step transition' Ice layers for ReD=10,000, N = 0, B = 10 and B = 13.
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5.2. Rotating pipe ¯ow

The in¯uence of rotation on the ice layer at

ReD=20,000 and B = 10 is shown in Fig. 15. At

N= 1 the additional ¯ow laminarization induced by

the rotation causes a thicker solid phase and leads to a

`step transition' ice formation whereas at N = 0 a

`smooth transition' occurs.

Fig. 16 depicts the shape of the frozen crust at

ReD=10,000, B = 10 with rotation (N = 0.5) and

without (N = 0). In the non-rotating pipe the ice layer

in the entrance region as well as at the end of the

cooled section is thinner, but the maximum thickness

occurs at N= 0, too. This is caused by the phenom-

enon that the laminarization e�ect of rotation

decreases rapidly with increasing ice layer thickness

(see Eq. (2)). As a result the extreme ¯ow laminariza-

tion at N= 0.5 is destabilized inducing an early

retransition.

Fig. 17 shows the in¯uence of the Reynolds number

at B = 10 and N = 0.5. At the lower value

ReD=10,000 the ice layer is thicker again, but in con-

trast to the conditions in a non-rotating pipe (see Fig.

14) the location of the wave does not depend on the

Fig. 16. `Step transition' ice layers for ReD=10,000, B = 10, N= 0 and N= 0.5.

Fig. 15. Ice layers for ReD=20,000, B= 10, N = 0 (`smooth transition') and N= 1 (`step transition').
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Reynolds number any more (see Eq. (6)). Because of

the thinner ice layer the laminarization due to rotation
decreases slower matching the less intensive turbulence
suppression caused by the ¯ow acceleration.

Concerning the e�ects of pipe rotation the turbu-
lence model provides a very good agreement with ex-
perimental results. Only the second wave at
ReD=10,000, B = 10, N= 0.5 (see Figs. 6 and 16) is

not captured because the applicability of the parabolic
model is restricted to ice layers with only one wave.

6. Conclusions

The formation of the steady-state solid±liquid inter-

face in an axially rotating turbulent pipe ¯ow is in¯u-
enced by two di�erent laminarization e�ects. The
acceleration of the ¯ow caused by the converging

shape of the solid phase leads to a suppression of tur-
bulent motion which is enhanced by the laminarization
e�ect of the superimposed pipe rotation. The sub-
sequent retransition of the ¯ow generates a wavy shape

of the frozen crust. Considering a `step transition' ice
formation with ¯ow separation the location of the sep-
aration point zw is found to be a function of the freez-

ing parameter B. Moreover, in the non-rotating pipe
the Reynolds number ReD in¯uences zw, too.
The applied Reynolds stress turbulence model is able

to capture the mentioned laminarization e�ects and
provides a good agreement with experimental ice layers
showing one wave.

References

[1] R.D. Zerkle, J.E. Sunderland, The e�ect of liquid solidi-

®cation in a tube upon laminar-¯ow heat transfer and

pressure drop, ASME Journal of Heat Transfer 90

(1968) 183±190.

[2] B. Weigand, H. Beer, Freezing in turbulent ¯ow inside

tubes and channels, WaÈ rme- und Sto�uÈ bertragung 28

(1993) 57±64.

[3] R.R. Gilpin, Ice formation in a pipe containing ¯ows in

the transition and turbulent regimes, ASME Journal of

Heat Transfer 103 (1981) 363±368.

[4] T. Hirata, H. Matsuzawa, A study of ice-formation

phenomena on freezing of ¯owing water in a pipe,

ASME Journal of Heat Transfer 109 (1987) 965±970.

[5] B. Weigand, H. Beer, Ice-formation phenomena for

water ¯ow inside a cooled parallel plate channel: an ex-

perimental and theoretical investigation of wavy ice

layers, International Journal of Heat and Mass Transfer

36 (1993) 685±693.

[6] K. Kikuyama, M. Murakami, K. Nishibori, K. Maeda,

Flow in an axially rotating pipe, Bulletin of the JSME

26 (1983) 506±513.

[7] G. Reich, H. Beer, Fluid ¯ow and heat transfer in an

axially rotating pipeÐI. E�ect of rotation on turbulent

pipe ¯ow, International Journal of Heat and Mass

Transfer 32 (1989) 551±562.

[8] K. Nishibori, K. Kikuyama, M. Murakami,

Laminarization of turbulent ¯ow in the inlet region of

an axially rotating pipe, Bulletin of the JSME 30 (1987)

255±262.

[9] B. Weigand, H. Beer, Fluid ¯ow and heat transfer in an

axially rotating pipe: the rotational entrance, in:

Proceedings of the Third International Symposium on

Transport Phenomena and Dynamics of Rotating

Machinery, Honolulu, Hawaii, 1990, vol. 1. pp. 439±

454.

Fig. 17. `Step transition' ice layers for B = 10, N= 0.5, ReD=10,000 and ReD=20,000.

K.-J. Rinck, H. Beer / Int. J. Heat Mass Transfer 42 (1999) 4375±43894388



[10] S. Hirai, T. Takagi, M. Matsumoto, Predictions of the

laminarization phenomena in an axially rotating pipe

¯ow, ASME Journal of Fluids Engineering 110 (1988)

424±430.

[11] J.M. Eggels, Direct and large eddy simulation of turbu-

lent ¯ow in a cylindrical pipe geometry, Doctoral thesis,

Delft University Press, 1994.

[12] K.-J. Rinck, H. Beer, Freezing in turbulent ¯ow inside

an axially rotating pipe at low ¯ow-rate Reynolds num-

bers, in: Proceedings of the Sixth International

Symposium on Transport Phenomena and Dynamics of

Rotating Machinery, Honolulu, Hawaii, 1996, vol. 2.

pp. 440±449.

[13] P.M. Moretti, W.M. Kays, Heat transfer to a turbulent

boundary layer with varying free-stream velocity and

varying surface temperatureÐan experimental study,

International Journal of Heat and Mass Transfer 8

(1965) 1187±1202.

[14] K.-J. Rinck, ErstarrungsvorgaÈ nge einer FluÈ ssigkeit in

einem turbulent durchstroÈ mten und axial rotierenden

Rohr, Doctoral thesis, TU Darmstadt, Fortschritt-

Berichte VDI Verlag, Reihe 7, DuÈ sseldorf, 1999.

[15] T. Cebeci, K.C. Chang, A general method for calculat-

ing momentum and heat transfer in laminar and turbu-

lent duct ¯ows, Numerical Heat Transfer 1 (1978) 39±

68.

[16] T. Rothe, H. Beer, An experimental and numerical in-

vestigation of turbulent ¯ow and heat transfer in the

entrance region of an annulus between rotating tubes,

in: Proceedings of the Fifth International Symposium

on Transport Phenomena and Dynamics of Rotating

Machinery, Honolulu, Hawaii, 1994, vol. A, pp. 548±

560.

[17] S. Hogg, M.A. Leschziner, Computation of highly

swirling con®ned ¯ow with a Reynolds stress turbulence

model, AIAA Journal 27 (1989) 57±63.

[18] B.E. Launder, N. Shima, Second-moment closure for

the near-wall sublayer: development and application,

AIAA Journal 27 (1989) 1319±1325.

[19] K-J. Rinck, H. Beer, Numerical calculation of the fully

developed turbulent ¯ow in an axially rotating pipe with

a second-moment closure, ASME Journal of Fluids

Engineering 120 (1998) 274±279.

[20] J.C. Rotta, Statistische Theorie nichthomogener

Turbulenz, Zeitschrift fuÈ r Physik 129 (1951) 547.

[21] M. Ohtsuka, Numerical analysis of swirling non-react-

ing and reacting ¯ows by the Reynolds stress di�erential

method, International Journal of Heat and Mass

Transfer 38 (1995) 331±337.

[22] B.J. Daly, F.H. Harlow, Transport equations in turbu-

lence, Physics of Fluids 13 (1970) 2634±2649.

[23] B.E. Launder, B.I. Sharma, Application of the energy-

dissipation model of turbulence to the calculation of

¯ow near a spinning disk, Letters in Heat and Mass

Transfer 1 (1974) 131±137.

[24] T.A. Reyner, I. FluÈ gge-Lotz, The interaction of a shock

wave with a boundary layer, International Journal of

Nonlinear Mechanics 3 (1968) 173±199.

K.-J. Rinck, H. Beer / Int. J. Heat Mass Transfer 42 (1999) 4375±4389 4389


